NASA has unveiled an unprecedented new look at our planet at night. A global composite image, constructed using cloud-free night images from a new NASA and National Oceanic and Atmospheric Administration (NOAA) satellite, shows the glow of natural and human-built phenomena across the planet in greater detail than ever before.
The new sensor, the day-night band of the Visible Infrared Imaging Radiometer Suite (VIIRS), is sensitive enough to detect the nocturnal glow produced by Earth's atmosphere and the light from a single ship in the sea. Satellites in the U.S. Defense Meteorological Satellite Program have been making observations with low-light sensors for 40 years. But the VIIRS day-night band can better detect and resolve Earth's night lights. The images of Earth at night were released at a news conference at the American Geophysical Union meeting in San Francisco. This and other VIIRS day-night band images are providing researchers with valuable data for a wide variety of previously unseen or poorly seen events.
Many satellites are equipped to look at Earth during the day, when they can observe our planet fully illuminated by the sun. With a new sensor onboard the NASA-NOAA Suomi National Polar-orbiting Partnership (NPP) satellite launched last year, scientists now can observe Earth's atmosphere and surface during night time hours.
"For all the reasons that we need to see Earth during the day, we also need to see Earth at night," said Steve Miller, a researcher at NOAA's Colorado State University Cooperative Institute for Research in the Atmosphere. "Unlike humans, the Earth never sleeps."
The day-night band observed Hurricane Sandy, illuminated by moonlight, making landfall over New Jersey on the evening of Oct. 29. Night images showed the widespread power outages that left millions in darkness in the wake of the storm. With its night view, VIIRS is able to detect a more complete view of storms and other weather conditions, such as fog, that are difficult to discern with infrared, or thermal, sensors. Night is also when many types of clouds begin to form.
Unlike a camera that captures a picture in one exposure, the day-night band produces an image by repeatedly scanning a scene and resolving it as millions of individual pixels. Then, the day-night band reviews the amount of light in each pixel. If it is very bright, a low-gain mode prevents the pixel from oversaturating. If the pixel is very dark, the signal is amplified.
"The night is nowhere as dark as we might think," Miller said. And with the VIIRS day-night band helping scientists to tease out information from human and natural sources of nighttime light, "we don't have to be in the dark anymore, either."